Wireless Blood Pressure Sensor
PS-3218

About the product

The Wireless Blood Pressure Sensor is a digital sphygmomanometer that uses an electronic pressure sensor to measure the mean arterial pressure. The data collection software uses this measurement to calculate systolic and diastolic blood pressure, and heart rate. The blood pressure cuff consists of an inflatable bladder connected by one hose to a hand pump bulb and by a second hose that attaches to the pressure sensor box.

► Note: This is not a medical device. It is designed for educational use only and should not be used in any medical process such as life support or patient diagnosis. It is not intended for use in graduate research or industry including industrial control or any type of industrial testing.

What’s Included

- Wireless Blood Pressure Sensor
- Blood Pressure Cuff, Standard
- USB Cable

Required Items

- Data Collection Software
 This product requires either SPARKvue or PASCO Capstone for data collection and analysis.

Part names and descriptions

Blood pressure cuff

1. Bulb
 Squeeze the bulb rapidly to add pressure to the cuff.

2. Release Valve
 Press the button to release pressure from the cuff. In the center of the button is a screw that you can use to adjust the pressure release rate.

3. Luer Connector
 Connects to the luer connector on the sensor.

4. Cuff
 The cuff wraps around the upper left arm. Align the white index line on the cuff over the main artery on the inside of the arm.

1. Battery Status Light
 Indicates the battery level and charging status.

<table>
<thead>
<tr>
<th>LIGHT</th>
<th>STATUS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Red, blink</td>
<td>Low battery level</td>
</tr>
<tr>
<td>Green, solid</td>
<td>Fully charged</td>
</tr>
<tr>
<td>Yellow, solid</td>
<td>Charging</td>
</tr>
</tbody>
</table>

2. Threaded Hole
 Use for mounting the sensor, such as to a mounting rod. Accepts 1/4-in–20 screws.

3. Luer Connector
 Connects to the luer connector on the blood pressure cuff.

4. Device ID
 Use to identify the sensor when connecting using Bluetooth.

5. Bluetooth Status Light
 Indicates the status of the Bluetooth connection.

<table>
<thead>
<tr>
<th>LIGHT</th>
<th>STATUS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Red, blink</td>
<td>Ready to pair</td>
</tr>
<tr>
<td>Green, blink</td>
<td>Paired</td>
</tr>
<tr>
<td>Yellow, blink</td>
<td>Remotely logging data</td>
</tr>
</tbody>
</table>

6. USB Port
 Use with the USB cable to connect to a USB wall charger to charge the battery. Also use to send measurement data to software when connected to a USB port of a computer or mobile device (iOS devices not supported).

7. Power Button
 Press and hold for one second to turn the sensor on or off.
Getting started
Perform the tasks in this section before using this device in the classroom.

Charge the battery
The Wireless Blood Pressure Sensor contains a rechargeable battery that lasts an entire school day when fully charged. Charge the battery before using the Wireless Blood Pressure Sensor for the first time since it is not shipped with a full charge.

To charge the battery, connect the sensor to a USB wall charger or powered USB port using the USB cable. The battery status light is solid yellow while the battery is charging and changes to solid green when fully charged.

Install or update data collection software
The latest update of PASCO Capstone or SPARKvue is required to use the Wireless Blood Pressure Sensor. Download and install the software from the PASCO website. Check if an update is available if the software is already installed.

Windows and Mac Computers
Download: Go to pasco.com/sparkvue then click Downloads.
Update: Click Help then select Check for Updates.

Mobile Devices and Chromebooks
Search for SPARKvue in your device’s app store. SPARKvue automatically installs updates.

Using the sensor
Using the sensor requires two people since you can’t measure your own blood pressure. You need a partner to attach the cuff to your arm, inflate the cuff, and collect the data.

Set up the hardware
1. Insert the luer connector on the sensor into the connector on the blood pressure cuff. Turn the connector until it’s finger-tight.
2. Press and hold the push-button release valve to release all of the air in the cuff.
3. Wrap the cuff snugly around the upper left arm above the elbow.
4. Position the cuff’s bottom edge about 3 cm above the elbow pit. Rotate the cuff as needed to position the white index line on the cuff over the main artery on the inside of your left arm.
5. Use the hook-and-loop material to hold the cuff in place.
6. Allow the two tubes to hang down, one on each side of the arm.

Set up the software
1. Turn on the sensor.
2. Open SPARKvue then click Sensor Data.
3. Select the that matches its device ID.

PASCO Capstone
1. Turn on the sensor.
2. Open Capstone then click Hardware Setup.
3. Select the that matches its device ID. Click Hardware Setup to close the panel.
4. Select the Monitoring Blood Pressure Quick Start Experiment.

Check for a firmware update
Update the sensor firmware to access the latest features and bug fixes. Sensor firmware is installed using SPARKvue or PASCO Capstone. Connect the sensor to SPARKvue or PASCO Capstone to check for a firmware update.

Windows and Mac Computers
Download: Go to pasco.com/capstone then click Downloads.
Update: Click Help then select Check for updates.

Note: Remove any constrictive clothing or jewelry that may interfere with the cuff placement.
Collect data

1. Click Start (SPARKvue) or Record (Capstone) to begin data collection.
2. Have your partner rapidly pump air into the cuff until the pressure reaches approximately 170 mmHg.

⚠️ CAUTION: Do not pump above 200 mmHg. If there is discomfort, push and hold the push-button on the release valve to deflate the cuff.

3. Remain still as possible during data collection. The cuff pressure deflates by itself at a rate between 2 and 5 mmHg per second.

.opendan

4. Stop collecting data when the systolic and diastolic pressure measurements appear in the digits displays (about 30-60 seconds after starting data collection).

Note: If the pressure is not deflating between 2 and 5 mmHg per second, adjust the release rate by turning the adjustment screw on the pressure release valve. Turn the screwdriver counter-clockwise to decrease the rate and turn clockwise to increase the rate.

5. Release the remaining air in the cuff by pressing the push-button release valve on the bulb.

Analyzing blood pressure

The Wireless Blood Pressure Sensor uses the oscillometric technique to estimate blood pressure. When the oscillations of pressure in a blood pressure cuff are recorded during gradual deflation, the point of maximal oscillation corresponds to the mean intra-arterial pressure. The oscillations begin at approximately systolic pressure and continue below diastolic, so that systolic and diastolic pressure can only be estimated indirectly according to an empirically derived algorithm.

Systolic pressure is the pressure of the blood on the artery walls when it leaves the ventricles at peak ventricular contraction, when the heart is emptying its chambers of blood. It is the “top number” of the blood pressure ratio. Normal systolic pressure for a male is approximately 120 mmHg and for a female is approximately 110 mmHg.

Diastolic pressure is the pressure of the blood on the artery walls when the ventricles relax and the heart’s chambers fill with blood. It is the “bottom number” of the blood pressure ratio. Normal diastolic pressure for a male is approximately 80 mmHg and for females is approximately 70 mmHg.

To find the systolic and diastolic blood pressure manually:

1. Zoom in on an area of the pressure measurement between 120 and 60 mmHg.
2. Identify when your data begins to form small oscillations. This is your systolic pressure.
3. Identify when your data stops forming small oscillations. This is your diastolic pressure.

Figure 2. Example data showing how to find systolic and diastolic pressure manually.
Additional resources

Experiments
Print-ready experiment worksheets are available to download from the PASCO website. Go to pasco.com/freelabs and enter PS-3218 in the Part No. field.

Product information
Visit the product web page at pasco.com/product/PS-3218 for additional information including:
- Specifications
- Buying Guide
- Experiments
- Documents

Software help
The SPARKvue and PASCO Capstone Help provide additional information on how to use the Wireless Blood Pressure Sensor with the software. Access the help within the software or online.

SPARKvue
Software: Click then select Help.
Online: pasco.com/help/sparkvue

PASCO Capstone
Software: In the menu bar, click Help then select PASCO Capstone Help.
Online: pasco.com/help/capstone

Technical Support
Need more help? Our knowledgeable and friendly Technical Support staff is ready to provide assistance with this or any other PASCO product.

Phone (USA) 1-800-772-8700 (Option 4)
Phone (International) +1 916 462 8384
Online pasco.com/support

Regulatory information

Warranty, Copyright, and Trademarks
Limited Warranty
For a description of the product warranty, see the Warranty and Returns page at www.pasco.com/legal.

Copyright
This document is copyrighted with all rights reserved. Permission is granted to non-profit educational institutions for reproduction of any part of this manual, providing the reproductions are used only in their laboratories and classrooms, and are not sold for profit. Reproduction under any other circumstances, without the written consent of PASCO scientific, is prohibited.

Trademarks
PASCO and PASCO scientific are trademarks or registered trademarks of PASCO scientific, in the United States and/or in other countries. All other brands, products, or service names are or may be trademarks or service marks of, and are used to identify, products or services of, their respective owners. For more information visit www.pasco.com/legal.

Product end of life disposal instructions

Battery disposal instructions
Batteries contain chemicals that, if released, may affect the environment and human health. Batteries should be collected separately for recycling and recycled at a local hazardous material disposal location adhering to your country and local government regulations. To find out where you can drop off your waste battery for recycling, please contact your local waste disposal service, or the product representative. The battery used in this product is marked with the European Union symbol for waste batteries to indicate the need for the separate collection and recycling of batteries.

CE statement
This device has been tested and found to comply with the essential requirements and other relevant provisions of the applicable EU Directives.

FCC statement
This device complies with part 15 of the FCC Rules. Operation is subject to the following two conditions: (1) This device may not cause harmful interference, and (2) this device must accept any interference received, including interference that may cause undesired operation.