Master Materials and Equipment List

Italicized entries indicate items not available from PASCO. The quantity indicated is per student or group. NOTE: These activities also require protective gear for each student (for example, safety goggles, gloves, apron, or lab coat).

Instructors can conduct some lab activities with sensors other than those listed here. For assistance with substituting compatible sensors for a lab experiment, contact PASCO Instructor Support (800-772-8700 inside the United States or http://www.pasco.com/support).

Lab	Title	Materials and Equipment	Qty	
	Chemical Composition and Stoichiometry			
1	Determining the Empirical	Crucible with lid	1	
	Formula of a Compound	Ring stand	1	
	Use a crucible and Bunsen	Bunsen burner	1	
	burner to react a chemical with	Balance	1 per class	
	air in order to determine the	Crucible tongs	1	
	stoichiometric composition of an	Wash bottle with deionized water	1	
	ionic compound.	Clay triangle	1	
		Paper clip	1	
		Magnesium powder	$0.5~{ m g}$	
2	Determine the Percentage of	Crucible with lid	1	
	Water in a Hydrate	Ring stand	1	
	Use a crucible and Bunsen	Bunsen burner	1	
	burner to determine the water	Balance	1	
	content of a hydrated salt.	Crucible tongs	1	
		Wash bottle with deionized water	1 per class	
		Clay triangle	1	
		Copper sulfate, CuSO ₄ , hydrated	$4.5~\mathrm{g}$	
3	Mole Relationships in a	Data Collection System	1	
	Chemical Reaction	PASPORT Conductivity Sensor	1	
	Use a conductivity sensor to	Test tubes, 15-mL	9	
	determine the stoichiometric	Beaker, 100-mL	1	
	coefficients of the reactants of a	Graduated pipet, 10-mL	2	
	chemical reaction.	Pipet bulb	1	
		Test tube rack		
		Unknown solution (use potassium chromate)	50 mL	
		[0.01] M Silver nitrate (AgINO ₃)	50 mL	
		Wash bottle with deionized water		
		Farajum Manhing pan		
		marking pen	1	

Lab	Title	Materials and Equipment	Qty
4	Gravimetric Determination	Data Collection System	1
	of a Precipitate	PASPORT Stainless Steel Temperature	1
	Use a stainless steel	Sensor	
	temperature sensor with	Ring stand with ring	1
	gravimetric analysis to	Clamp, utility	1
	determine the amount of sulfate	Clamp, buret	1
	in a sample of an unknown	Crucible with lid	1
	alkalı sulfate.	Tongs	1
		Beaker, glass, 400-mL	1
		Beaker, glass, 250-mL	1
		Beaker, 25-mL	3
		Beaker or flask, 400-mL,	1
		Graduated cylinder, 100-mL	1
		Gradualea cylinaer, 10-mL	1
		Eurol	1
		Dropper	1
		Hot plate	1
		Bunsan hurnar	1
		Clay triangle	1
		0.5 M Barium chloride (BaCl ₂)	30 mL
		0.1 M Silver nitrate (AgNO ₂)	$5 \mathrm{mL}$
		6 M Hydrochloric acid (HCl)	5 mL
		Unknown alkali sulfate (use K_2SO_4 and	0.35 g
		Na ₂ SO ₄)	0
		Filter paper, Whatman [®] Ashless, #42	1
		Rubber policeman and stirring rod	1
		Watch glass, 100-mm	1
		Distilled water	100 mL
		Wash bottle with distilled water	1
5	Identifying an Unknown	Data Collection System	1
	Metal	PASPORT Absolute Pressure Sensor	1
	Use an absolute pressure sensor	PASPORT Stainless Steel Temperature	1
	and stainless steel temperature	Sensor	
	sensor to identify an unknown	PASPORT Sensor Extension Cable	1
	metal by applying the Ideal Gas	Quick-release connector**	1
	Law.	Tubing connector**	1
		Tubing, 1- to 2-cm**	1
		Graduated cylinder, 10-mL or 25-mL	1
		Graduatea cylinaer, 250-mL	1
		Erienmeyer flass, 250-mL Doghon, 1500 mJ	1
		Deuker, 1900-IIIL	1 1 pop alaga
		Dulunce Dubban stoppen with one hole	1 per class
		2 M Hydrogen chloride (HCl)	100 m
		Unbnown metal 0.2 g (use magnesium	3 niecos
		ribbon)	o pieces
		Electrical tape	1 roll

Lab	Title	Materials and Equipment	Qty
6	Synthesis of a Coordination	Balance	1 per class
	Compound	Hot plate	1
	Use a series of reactions to	Fume hood	1
	synthesize a coordination	Beaker, 400-mL	1
	compound, potassium aluminum	Beaker, 250-mL	2
	sulfate dodecahydrate (alum),	Beaker, 100-mL	1
	and calculate the theoretical and	Graduated cylinder, 50-mL	1
	percent yields.	Büchner funnel	1
		Büchner filter flask	1
		Stirring rod, glass	1
		Watch glass	1
		Scissors	1
		Beaker tongs	1
		Filter paper	3
		Wire gauze	1
		$3 M Sulfuric acid (H_2SO_4)$	35 mL
		3 M Potassium hydroxide (KOH)	25 mL
		50% Ethanol	50 mL
		100% Ethanol	50 mL
		Acetone (C_3H_6O)	50 mL
		Aluminum foil	$1.1~{ m g}$
		Distilled water for rinsing equipment	1
		Ice	400 mL
7	Analysis of a Coordination	Data Collection System	1
	Compound	PASPORT Stainless Steel Temperature	1
	Use a stainless steel	Sensor	
	temperature sensor to help	Ring stand with ring	1
	confirm the identity of a sample	Clay triangle	1
	of alum synthesized in Lab 15a	Clamp, buret	1
	by conducting both qualitative	Clamp, utility	1
	and quantitative analyses.	Crucible with lid	1
		Tongs	1
		Test tubes, 10 mL	2
		Beaker, 250-mL	1
		Capillary tube	1
		Stirring rod	1
		Watch glass, 100-mm	2
		Balance	1 per class
		Centrifuge	1 per class
		Wire with a loop on the end, 4 in.	1
		Hot plate	1
		Bunsen burner	1
		Striker	1
		$0.2 M Barium chloride (BaCl_2)$	1 mL
		6 M Sodium hydroxide (NaOH)	5 mL
		6 M Hydrochloric acid (HCl)	5 mL
		Borax	$0.5 \mathrm{g}$
		Alum from Synthesis of a Coordination	3 g
		Compound experiment	_
		Rubber band	1
		Water	200 mL
		Distilled water	10 mL

Lab	Title	Materials and Equipment	Qty
	Thermochen	nistry and Thermodynamics	
8	Enthalpy of a Chemical Reaction Use a stainless steel temperature sensor to derive the enthalpy change of a reaction.	Data Collection System PASPORT Stainless Steel Temperature Sensor Polystyrene cup, 8 oz. Clamp, utility Beaker, 250-mL Graduated cylinder, 50-mL or 100-mL Ring stand 2.00 M Sodium hydroxide (NaOH) 2.00 M Hydrochloric acid (HCl) 2.00 M Ammonium chloride (NH₄Cl)	1 1 1 1 1 1 50 mL 50 mL 50 mL
		2.00 M Ammonia (NH ₃)	50 mL
	Atomic	and Nuclear Structure	
9	Absorption Spectra Use a spectrometer to learn about the composition of the electromagnetic radiation in the visible range, to develop an understanding of how the interaction of objects and solutions with light result in the perception of color, and to dispel misconceptions of objects "having color."	Data Collection System PASPORT Sensor Extension Cable Amadeus Spectrometer System Glass cuvette with cap** Test tubes, large Test tube rack Graduated cylinder, 10-mL 0.1 M Iron(III) chloride (FeCl ₃) 0.1 M Copper(II) chloride (CuCl ₂) 0.1 M Cobalt chloride (CoCl ₂) 0.1 M Nickel(II) chloride (NiCl ₂) 0.1 M Sodium chloride (NaCl) Color chart Wash bottle with distilled water Marking pen	1 1 1 1 6 1 1 10 mL 10 mL 10 mL 10 mL 10 mL 10 mL 10 mL 1 10
10	Determining the Half-Life of an Isotope Use an alpha beta gamma radiation sensor to investigate the radioactive decay and half- life of an isotope.	Data Collection System PASPORT Alpha Beta Gamma Radiation Sensor Isotope Generator Kit (Barium-137m) Barium-137m solution Aluminum plate	1 1 1 per class 1 1

Lab	Title	Materials and Equipment	Qty
		Gas Laws	
11	Determine the Molar Mass of	Data Collection System	1
	a Volatile Liquid	PASPORT Stainless Steel Temperature	1
	Use a stainless steel	Sensor	
	temperature sensor to determine	PASPORT Absolute Pressure Sensor	1
	the molar mass of an unknown	Quick-release connector**	1
	volatile liquid at the boiling	Tubing connector**	1
	temperature of water and	Tubing, 1- to 2-cm**	1
	atmospheric pressure.	Beaker, 400-mL	2
		Erlenmeyer flask, 125-mL	1
		Graduated cylinder, 100-mL	1
		Hot plate with magnetic stirrer and stir bar	1
		Balance	1 per class
		Ring stand	1
		Clamp	2
		Unknown volatile liquid (use acetone)	8 mL
		Aluminum foil, about 4-cm by 4-cm	1
		Paper towel, sheets	2 or 3
		Dropper	1
		Water	600 mL
12	Molar Volume of a Gas	Data Collection System	1
	Use an absolute pressure sensor	PASPORT Absolute Pressure Sensor	1
	and stainless steel temperature	PASPORT Stainless Steel Temperature	1
	volume of a gas by relating	PASPORT Sensor Extension Cable	1
	pressure volume and	Quick-release connector**	1
	temperature	Tubing connector**	1
		Tubing 1. to 2.cm**	1
		Beaker 600-mL	1
		Erlenmever flask 250-mL	1
		Graduated cylinder 10-mL or 25-mL	1
		Graduated cylinder, 10 mL of 20 mL	1
		Balance	1 per class
		Rubber stopper with one hole	
		3 M Hydrochloric acid (HCl)	$\frac{1}{20}$ mL
		Magnesium ribbon	about
			0.20 g
		Water	300 mL
		Electrical tape (optional)	1 roll

Lab	Title	Materials and Equipment	Qty
13	Exploring Gas Laws	Data Collection System	1
	Use an absolute pressure sensor	PASPORT Absolute Pressure Sensor	1
	and stainless steel temperature	PASPORT Sensor Extension Cable	1
	sensor to explore the	PASPORT Stainless Steel Temperature	1
	relationship between pressure	Sensor	
	and volume, and pressure and	Quick-release connector**	1
	temperature, for a gas.	Tubing connector**	1
		Tubing, 1- to 2-cm**	1
		Ring stand	1
		Clamp, utility	1
		Beaker, 1500-mL	1
		Erlenmeyer flask, 250-mL	1
		Syringe, 60-mL	1
		Hot plate with magnetic stirrer and stir bar	1
		Rubber stopper, 2-hole	1
		Glycerin	several
			drops
		Electrical tape	1 roll
		Water	1200 mL
	Intermolecula	r Forces and States of Matter	
14	Molecular Interaction in	Data Collection System	1
	Ethanol and Acetone	PASPORT Stainless Steel Temperature	1
	Use an absolute pressure sensor	Sensor	
	and stainless steel temperature	PASPORT Absolute Pressure Sensor	1
	sensor to determine and relate	PASPORT Sensor Extension Cable	1
	the heat of vaporization of	Quick-release connector**	1
	substances to the interactions	Tubing connector**	1
	between molecules.	Tubing. 1- to 2-cm**	1
		Beaker. 1500-mL	1
		Beaker, 50-mL	1
		Erlenmever flask. 250-mL	1
		Graduated cylinder. 50-mL	1
		Hot plate with magnetic stirrer and stirring	1
		bar	-
		Clamp, utility	1
		Ring stand	1
		100% Ethanol (C ₂ H ₅ OH)	50 mL
		Acetone ((CH_3) ₂ CO)	50 mL
		Rubber stopper, 2-hole	1
		Glycerin	2 drops
		Water	1200 mL

Lab	Title	Materials and Equipment	Qty
	Solu	tions and Solubility	
15	Molecular Weight by Freezing Point Depression Use a stainless steel temperature sensor to determine the molecular weight of a compound by measuring the freezing point depression of a	Data Collection System PASPORT Stainless Steel Temperature Sensor Erlenmeyer flask, 250-mL Beaker, 400-mL Test tube, 20-mL Conper wire coil	1 1 1 1 1 1
	solution.	Ring stand Hot plate Stirring bar Clamp, utility $Lauric acid, CH_3(CH_2)_{10}COOH$ Unknown solute (use benzoic acid) Water	1 1 1 2 8 g 0.5 g 300 mL
16	Colorimetric Analysis Use a colorimeter to learn how the factors of concentration and path length affect the absorbance of a colored solution.	Data Collection System PASPORT Colorimeter PASPORT Sensor Extension Cable** Glass cuvette with cap** Beakers, 100-mL Test tubes, large Test tube rack Graduated cylinder, 50-mL Pipet with pump or bulb 10-mL Pipet bulb Glass stirring rod 0.40 M copper(II) sulfate (CuSO ₄) Distilled water Marking pen Wash bottle with distilled water	1 1 1 1 2 6 1 1 1 1 30 mL 30 mL 1 1 1
17	Separation by Liquid Chromatography Use liquid chromatography to separate the ingredients of a mixture.	C18 Sep-Pak [®] cartridge Syringe, 1-mL Syringe, 10-mL, or dropper bottle or wash bottle Graduated cylinder, 10-mL 18% Isopropanol Unsweetened Kool-Aid® drink Distilled water	1 1 1 100 mL 10 mL 10 mL

Lab	Title	Materials and Equipment	Qty
18	Conductometric Titration	Data Collection System	1
	Use a conductivity sensor and	PASPORT Conductivity Sensor	1
	drop counter to determine the	PASPORT High Accuracy Drop Counter	1
	concentration of a solution with	Micro stir bar**	1
	titration.	Magnetic stirrer	1
		Buret, 50-mL	1
		Beaker, 100-mL	2
		Beaker, 50-mL	1
		Buret or volumetric pipet, 50-mL	1
		Ring stand	1
		Clamp, right-angle	1
		Clamp, buret	1
		$0.0200 M H_2 SO_4$ solution	50 mL
		Barium hydroxide (Ba(OH) ₂), unknown	50 mL
		concentration	
		Deionized water	50 mL
		Wash bottle with deionized water	1
		Cotton swab or tissue	1
19	Separation and Analysis of	Test tube, 10-mL	10
	Cations	Test tube rack	1
	Use chemical reactions and	Pipet, graduated, 10-mL	1
	chemical properties to identify	Pipet bulb	1
	the cations present in a mixture	Pipet, plastic, 1-mL	7
	by systematically reacting the	Centrifuge	1
	unknown with various reagents.	Beaker, 250-mL	1
		Evaporating dish	1
		Stirring rod	1
		Hot plate	1
		Litmus paper	10
		pH paper	1 roll
		6 M Sodium hydroxide (NaOH)	20 mL
		6 M Ammonia (NH ₃)	20 mL
		$0.1 M Potassium chromate (K_2CrO_4)$	20 mL
		1% Aluminon dye	2 mL
		6 M Hydrochloric acid (HCl)	20 mL
		Dimethylglyoxime (DMG) reagent	5 drops
		$0.2 M Potassium ferrocyanide (K_4[Fe(CN)_6])$	2 mL
		$3 M Sulfuric acid (H_2SO_4)$	3 mL
		3 % Hydrogen peroxide (H ₂ O ₂)	2 mL
		Unknown cation solution (use AlCl ₃ , NiCl ₃ ,	20 mL
		$Pb(NO_3)_2$, $AgNO_3$, $MnSO_4$, $(NH_4)_2Fe(SO_4)_2$)	
		Deionized water	5 mL
		Marking pen	1

Lab	Title	Materials and Equipment	Qty
20	Analysis of Anions	Test tube, 10-mL	13
	Use chemical reactions and	Test tube rack	1
	chemical properties to analyze	Pipets, 1 mL, disposable	13
	solutions of known anions, using	Stirring rods	5
	the results to analyze a solution	Litmus paper	15
	of unknown anions.	0.2 M Sodium sulfate (Na ₂ SO ₄)	10 mL
		0.2 M Monopotassium phosphate (KH ₂ PO ₄)	5 mL
		0.2 M Sodium nitrate (NaNO ₃)	5 mL
		0.2 M Sodium chloride (NaCl)	5 mL
		Unknown anion solution (use Na ₂ SO ₄ ,	20 mL
		KH ₂ PO ₄ , NaNO ₃ , NaCl)	
		0.2 M Barium nitrate (Ba(NO ₃) ₂)	5 mL
		Saturated iron(II) sulfate (FeSO ₄)	2 mL
		0.1 M Silver nitrate (AgNO ₃)	5 mL
		6 M Nitric acid (HNO ₃)	5 mL
		5 M Ammonia (NH ₃)	5 mL
		$3 M Sulfuric acid (H_2SO_4)$	5 mL
		Concentrated H_2SO_4	2 mL
		Distilled water	10 mL
		Centrifuge	1
		Marking pen	1
	Aci	id-Base Chemistry	
21	Standardizing a Solution of	Data Collection System	1
	Sodium Hydroxide	PASPORT pH Sensor	1
	Use a pH sensor and drop	PASPORT High Accuracy Drop Counter	1
	counter to determine the	Micro stir bar**	1
	concentration of a sodium	Magnetic stirrer	1
	hydroxide solution by titrating it	Ring stand	1
	with a standard solution of	Beaker, 250-mL	1
	known concentration.	Beaker, 100-mL	1
		Beaker, 10-mL	2
		Volumetric flask, 250-mL	1
		Buret, 50-mL	1
		Clamp, buret	1
		Clamp, right-angle	1
		Funnel	1
		Potassium hydrogen phthalate (KHP)	$0.6~{ m g}$
		Sodium hydroxide (NaOH)	1.0 g
		Buffers, pH 4 and pH 10	10 mL
		Water, deionized	500 mL
		Wash bottle with deionized water	1
		Parafilm [®] or aluminum foil	1
		Cotton swab or tissue	1

Lab	Title	Materials and Equipment	Qty
22	Acid-Base Titration	Data Collection System	1
	Use a pH sensor and drop	PASPORT pH Sensor	1
	counter to determine the molar	PASPORT High Accuracy Drop Counter	1
	concentration of a strong acid	Micro stir bar**	1
	solution by titrating measured	Magnetic stirrer	1
	volumes with a strong base of	Buret, 50-mL	1
	known concentration.	Graduated pipet, 25-mL	1
		Pipet bulb	1
		Beaker, 100-mL	2
		Beaker, 25-mL	2
		Clamp, right-angle	1
		Clamp, buret	1
		Ring stand	1
		Parafilm [®] or aluminum foil	1
		Funnel	1
		Hydrochloric acid, unknown concentration	70 mL
		Sodium hydroxide (NaOH), standardized by	100 mL
		students in Standardizing a Solution of	
		Sodium Hydroxide experiment	10 mL
		Buffers, pH 4 and pH 10	100 mL
		Deionized water	1
		Wash bottle with deionized water	1
		Cotton swab or tissue	1
23	Using Different Indicators	Data Collection System	1
	for pH Determination	PASPORT High Accuracy Drop Counter	1
	Use a drop counter and pH	PASPORT pH Sensor	1
	sensor to determine the CO_2	Micro stir bar**	1
	content of a beverage by	Clamp, right-angle	1
	performing titrations with	Clamp, buret	1
	multiple acid-base indicators.	Buret, 50-mL	1
		Beaker, 25-mL	2
		Beaker, 250-mL	2
		Erlenmeyer flask, 250-mL	1
		Graduated cylinder, 100-mL	1
		Phenolphthalein	5 drops
		Methyl orange	5 drops
		Magnetic stirrer and stir bar	1
		Ring stand	1
		Commercial soda drink	1 can
		Kimwipes ^w	1
		4.00 M HCl solution	100 mL
		1 M NaOH solution	100 mL
		Wash bottle with deionized water	1
		Funnel	1
		Balloon (fits on Erlenmeyer flask; holds	1
		Duffere nH 4 and nH 10	10 mT
		Cattan angle an tionus	10 mL
		Couon swao or tissue	1

Lab	Title	Materials and Equipment	Qty
24	Properties of Buffer	Data Collection System	1
	Solutions	PASPORT pH Sensor	1
	Use a pH sensor to demonstrate	Beaker, 400-mL	1
	the properties of buffer solutions	Buret, 50-mL	1
	and buffer capacity.	Pipet, 5-mL	1
		Pipet bulb	1
		Beaker, 100-mL	1
		Beaker, 25-mL	2
		Graduated cylinder, 250-mL	1
		Magnetic stirrer and stirring bar	1
		Ring stand	1
		Clamp, buret	1
		Clamp, utility	1
		Funnel	1
		2.000 M Sodium hydroxide (NaOH)	250 mL
		0.1 M Acetic acid (HOAc)	250 mL
		0.3 M Acetic acid (HOAc)	250 mL
		0.5 M Acetic acid (HOAc)	250 mL
		6.00 M Hydrochloric acid (HCl)	5 mL
		Buffers, pH 4 and pH 10	10 mL
		Wash bottle with deionized water	1
25	Determining <i>K</i> _a by Half-	Data Collection System	1
	Titration of a Weak Acid	PASPORT pH Sensor	1
	Use a pH sensor and drop	PASPORT High Accuracy Drop Counter	1
	counter to determine the	Ring stand	1
	equilibrium constant for the	Clamp, right-angle	1
	ionization of a weak acid to	Clamp, buret	1
	ascertain the identity of the acid.	Beaker, 100-mL	2
		Buret, 50-mL	1
		Graduated cylinder, 100-mL	1
		Funnel	1
		Magnetic stirrer and stir bar	1
		0.20 M Sodium hydroxide (NaOH)	75 mL
		Unknown weak acid solution (use acetic acid)	50 mL
		Buffer solutions, pH 4 and pH 10	10 mL

Lab	Title	Materials and Equipment	Qty
26	Determination of the K _a	Data Collection System	1
	Values of Two Isomeric	PASPORT pH Sensor	1
	Multi-Protic Acids	PASPORT High Accuracy Drop Counter	1
	Use a pH sensor and drop	Micro stir bar**	1
	counter to determine the acidity	Ring stand	1
	constants of two isomeric multi-	Clamp, right-angle	1
	protic acids and relate the	Clamp, buret	1
	acidity constants to their	Beaker, 250-mL	2
	structural differences.	Beaker, 25-mL	2
		Buret, 50-mL	1
		Graduated cylinder, 100-mL	1
		Magnetic stiffer	1 50 mJ
		Unidentified malaia acid solution	50 mL
		0.500 M Sodium hydroride (NaOH)	150 mL
		Funnel	1
		Buffers pH 4 and pH 10	10 mL
		Wash bottle with deionized water	1
		Cotton swab or tissue	1
	Kinot	tion and Fauilibrium	
97	Riner	Dete Collection System	1
27	Constant for a Chamical	Data Collection System	1
	Reaction	PASPORT Songer Extension Cable**	1
	Use a colorimeter to determine	Reaber 50-mL	9
	the equilibrium constant for a	Test tube 15-mL	5
	chemical reaction.	Test tube rack	1
		Graduated pipet, 10-mL	2
		Pipet bulb	1
		$0.01 \ M \ Iron \ (Fe^{3+})$	20 mL
		0.00300 M Potassium thiocyanate (KSCN)	20 mL
		<i>Kimwipes</i> ®	1
		Deionized water	40 mL
		Marker	1
28	Determination of the Rate of	Data Collection System	1
	the Decomposition of	PASPORT Absolute Pressure Sensor	1
	Ilao an abacluta progruma concor	Sensor	1
	and stainless staal temperature	PASPORT Sensor Extension Cable	1
	sensor to determine the rate	Quick-release connector**	1
	constant of a chemical reaction.	Tubing connector**	1
		Tubing, 1- to 2-cm**	1
		Beaker, 100-mL	3
		Erlenmeyer flask, 250-mL	1
		Graduated pipet, 25-mL	3
		Pipet bulb	3
		Stopper, two holes, for the Erlenmeyer flask	1
		Beaker, 50-mL	1
		Glycerin	several
		0 1000 M Detressium is 1:1. (VI)	drops
		2^{0} , Hudrogen pareceide (H O)	40 mI
		Deionized water	100 mL
		Electrical tape, 60 in. (optional)	1

Lab	Title	Materials and Equipment	Qty
29	Determination of a Solubility	Data Collection System	1
	Product	PASPORT pH Sensor	1
	Use a pH sensor and drop	PASPORT High Accuracy Drop Counter	1
	counter to determine the	Micro stir bar**	1
	solubility product of an ionic	Ring stand	1
	compound through titration and	Clamp, buret	1
	calculations.	Clamp, right-angle	1
		Beaker, 100-mL	1
		Beaker, 150-mL	2
		Beaker, 25-mL	2
		Pipet, graduated or volumetric, 50-mL	1
		Pipet bulb	1
		Buret, 50-mL	1
		Büchner filter flask	1
		Büchner funnel	1
		Pipet, transfer	1
		Filter paper	1
		Magnetic stirrer	1
		0.1000 M Hydrochloric acid (HCl)	200 mL
		Calcium hydroxide (Ca(OH) ₂), saturated	200 mL
		Buffers, pH 4 and pH 10	10 mL
		Wash bottle with distilled water	1
		Parafilm [®] or aluminum foil	1
		Cotton swab or tissue	1
30	Order of Reaction	Data Collection System	1
	Use a colorimeter to determine	PASPORT Colorimeter	1
	the rate constant and the order	PASPORT Sensor Extension Cable**	1
	of reaction.	Glass cuvette with cap**	1
		Beaker, 50-mL	3
		Syringe, 5-mL	3
		Watch glass, 4 in	1
		0.1 M Sodium hydroxide (NaOH)	20 mL
		$1.2 \times 10^{-5} M Crystal violet$	20 mL
		Water, distilled	30 mL
		Marking pen	1
		<i>Kimwipes</i> [®]	1

Lab	Title	Materials and Equipment	Qty
	Electrochemistry		
31	Oxidation-Reduction Titration Use an oxidation reduction potential electrode and drop counter to determine the concentration of a commercial, nominally 3% hydrogen peroxide solution, measuring the change in potential during an oxidation- reduction reaction.	Data Collection System PASPORT Chemistry Sensor PASPORT Oxidation Reduction Potential Electrode PASPORT High Accuracy Drop counter Magnetic stirrer and stir bar Buret, 50-mL Beaker, 150-mL Volumetric pipet, 10-mL Pipet bulb Graduated cylinder, 50-mL Clamp, right-angle Clamp, buret Ring stand Hydrogen peroxide, ~ 3%, 1:20 dilution 1.000 × 10 ⁻² M Potassium permanganate (KMnO ₄) 4 M Sulfuric acid (H ₂ SO ₄)	1 1 1 1 1 1 2 1 1 1 1 1 40 mL 100 mL 70 mL
32	Determination of Electrochemical Series Use a voltage sensor to determine the half-reactions that relate to the anode and cathode of a galvanic cell and to calculate the electromotive force for a battery.	Water, deionizedData Collection SystemPASPORT Voltage SensorBeaker, 50-mLGlass plate $(5 \times 5 in)$ Disposable droppers, 1 mLIron strip, 1-cm × 1-cmLead strip, 1-cm × 1-cmSilver wire, 1-cmZinc strip, 1-cm × 1-cmCircular filter paper, 11-cm diameter1.0 M Zinc sulfate (ZnSO ₄)1.0 M Iron sulfate (FeSO ₄)1.0 M Silver nitrate (AgNO ₃)1.0 M Sodium nitrate (NaNO ₃)Steel woolScissors	250 mL 1 1 6 1 6 1 1 1 1 1 1 1 10 mL 10 mL

Lab	Title	Materials and Equipment	Qty
33	Electroplating	Data Collection System	1
	Use a voltage-current sensor to	PASPORT Voltage–Current sensor	1
	construct an electrochemical cell	DC power supply	1
	that deposits copper onto	Banana plug cords, red	2
	another metal surface and to	Banana plug cord, black	1
	apply Faraday's law to relate the	Alligator clip, red	1
	total electric charge to the mass	Alligator clip, black	1
	of metal deposited.	Ring stand	1
		Clamps	2
		Beaker, 100-mL	1
		Magnetic stir plate	1
		Balance	1
		Metal object (key or spoon)	1
		Copper strip or heavy gauge copper wire	1
		(3 in)	
		$1.0 M Copper sulfate (CuSO_4)$	50 mL
		Steel wool	1
		Electrical tape	1
		Paper towel	1 sheet
		Magnetic stirring bar	1
34	The Breathalyzer™ Test for	Data Collection System	1
	Alcohol	PASPORT Colorimeter	1
	Use a colorimeter to determine	PASPORT Sensor Extension Cable**	1
	the concentration of an ethanol	Glass cuvette with cap**	1
	solution using the	Erlenmeyer flask, 125-mL	7
	Breathalyzer ^{IM} test: chemical	Volumetric flask, 100-mL	1
	oxidation of ethanol by acidic	Graduated pipet, 10-mL	1
	dichromate.	Graduated pipet, 5-mL	1
		Pipet, plastic, 1-mL	1
		Graduated cylinder, 100-mL	1
		Beaker, 25-mL	2
		Beaker, 100-mL	1
		Beaker, 400-mL	2
		Beaker, 250-mL	1
		Beaker, 1-L	1
		Ring stand	1
		Clamps, utility	2
		Hot plate	1
		15% Sulfuric acid (H_2SO_4)	800 mL
		Silver nitrate (AgNO ₃), 15%	10 mL
		$5.10 \times 10^2 M Potassium dichromate$	30 mL
		$(K_2Cr_2O_7)$	
		Ethanol solution, unknown concentration	5 mL
		Marking pen	1
		Wash bottle with distilled water	1

Lab	Title	Materials and Equipment	Qty	
	Organic Chemistry			
35	Organic Synthesis I—	Data Collection System	1	
	Preparation	PASPORT Stainless Steel Temperature	1	
	Use a stainless steel	Sensor		
	temperature sensor to synthesize	Ring stand	1	
	an organic compound (aspirin).	Clamp	2	
		Erlenmeyer flask, 125-mL	1	
		Graduated cylinder, 10-mL	1	
		Beaker, 100-mL	1	
		Beaker, 400-mL	1	
		Hot plate	1	
		Büchner filter flask	1	
		Büchner funnel	1	
		Filter paper	1	
		Salicylic acid $(C_7H_6O_3)$	$2 ext{ g}$	
		Acetic anhydride ($C_4H_6O_3$)	4 mL	
		Concentrated phosphoric acid (H_3PO_4)	1 mL	
		Wash bottle with distilled water	1	
		Eye dropper	1	
		Rubber policeman	1	
		Ice cold distilled water	50 mL	
		Ice for ice bath	300 mL	
		Forceps	1	

Lab	Title	Materials and Equipment	Qty
36	Organic Synthesis II—	Data Collection System	1
	Analysis	PASPORT Stainless Steel Temperature	1
	Use a stainless steel	Sensor	
	temperature sensor, pH sensor,	PASPORT pH Sensor	1
	and drop counter to perform	PASPORT High Accuracy Drop Counter	1
	qualitative and quantitative	Micro stir bar**	1
	analytical methods, including	Ring stand	1
	melting point determination and	Clamp, utility	1
	titration, to analyze the purity of	Clamp, right-angle	1
	the aspirin synthesized in Lab	Clamp, buret	1
	22a.	Beaker, 150-mL	2
		Beaker, 100-mL	1
		Beaker, 25-mL	2
		Test tubes, 15-mL	3
		Melting point capillary tube	1
		Buret, 50-mL	1
		Graduated cylinder, 100-mL	1
		Magnetic stirrer and stir bar	1
		Hot plate with magnetic stirrer and stir bar	1
		Mortar and pestle	1
		Product from Organic Synthesis I experiment	1
		Aspirin tablet	1
		Ethanol	15 mL
		0.1 M Sodium hydroxide (NaOH)	75 mL
		1% Iron chloride (FeCl ₃)	2 mL
		Mineral oil	150 mL
		Buffers, pH 4 and pH 10	10 mL
		Water, distilled	100 mL
		Rubber band, small	1
		Wash bottle with deionized water	1

*Either the PASPORT Fast Response Temperature Sensor or the PASPORT Stainless Steel Temperature Sensor can be used for this experiment.

** These items are included with the specific apparatus or sensor used in the experiment.

Calibration materials

If you want to calibrate various sensors, you will need the following:

pH Sensor

Item	Quantity	Where Used
Buffer solution, pH 4	25 mL	21, 22, 23, 24, 25, 26, 29, 36
Buffer solution, pH 10	25 mL	
Beaker, small	3	
Wash bottle with deionized or distilled water	1	

Colorimeter

Item	Quantity	Where Used
Cuvette (included with colorimeter)	1	16, 27, 30, 34
Distilled water	7 mL	